
The complexity of the isomorphism relation

between oligomorphic groups

André Nies
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Oligomorphic groups

• S∞ denotes the group of permutations of N.

• S∞ is a topological group: the subgroups Un of permutations

fixing 0, . . . , n− 1 form a basis of neighbourhoods of 1.

• For any model M with domain N, the group Aut(M) is a

closed subgroup of S∞.

• A closed subgroup G of S∞ is called oligomorphic

(Cameron, 1980s) if for each k, the action of G on Nk has only

finitely many orbits.

• whether G is oligomorphic depends on the way G is embedded

into S∞.

• An oligomorphic group cannot be locally compact, let alone

countable.
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Oligomorphic groups as automorphism groups
Fact

A closed subgroup G of S∞ is oligomorphic ⇐⇒
G is the automorphism group of an ω-categorical structure A

(with domain N).

Proof.

⇐: this follows from the Ryll-Nardzewski Theorem that for each k,

the structure A has only finitely many k-types.

⇒:

• Given a subgroup U ≤ S∞ let AU be the structure with a

k-ary relation symbol for each orbit of U on Nk.

• Then U = Aut(AU). So for closed G we have G = Aut(AG).

• If G is oligomorphic then AG is ω-categorical.
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Oligomorphic groups as automorphism groups

Fact (Recall)

A closed subgroup G of S∞ is oligomorphic ⇐⇒
G is the automorphism group of an ω-categorical structure A.

For instance, the following automorphism groups are oligomorphic:

• S∞
• Aut(random graph)

• Aut(F(ω)
p ) where F(ω)

p ) is vector space of dimension ω over the

field with p elements

• Aut(Q, <), the group of order-preserving permutations of the

rationals.
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Properties of the oligomorphic group Aut(Q, <)

Let G = Aut(Q, <).

• G is highly homogeneous: for each k, its action on N[k] is

transitive

• G has three nontrivial normal subgroups

• G has the small index property: any subgroup of G of index

< 2ℵ0 is open

• G has a dense subgroup isomorphic to the free group F2

(Glass and McCleary 1990). In particular, G is topologically

finitely generated

• G is extremely amenable: each continuous action on a

compact space has a fixed point (Pestov).
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Borel reducibility ≤B
A standard Borel space is a space of the form (Z,B), where B is

the σ-algebra generated by the open sets of a Polish topology on Z.

Sets in B are called Borel sets of Z.

• Let X, Y be standard Borel spaces. A function g : X → Y is

Borel if the preimage of each Borel set in Y is Borel in X.

• Let E,F be equivalence relations on X, Y respectively. We

write E ≤B F , and say that E is Borel below F , if there is a

Borel function g : X → Y such that

uEv ↔ g(u)Fg(v)

for each u, v ∈ X.

An equivalence relation is called smooth if it is Borel-below idY ,

the identity relation on some uncountable Polish space Y (say, R).
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The Borel space of closed subgroups of S∞
For a 1-1 map σ : {0, . . . , n− 1} → N let

Nσ = {α ∈ S∞ : ∀i < n [σ(i) = α(i)]}

The closed subgroups of S∞ can be seen as points in a standard

Borel space. To define the Borel sets, we start with sets of the form

{G ≤c S∞ : G ∩Nσ 6= ∅},

where G ≤c S∞ means that G is a closed subgroup of S∞.

The Borel sets are generated from these basic sets by

complementation and countable union.

Example: for every α ∈ S∞, the set
⋂
k{H : H ∩Nα �k 6= ∅} is Borel. Its

elements are the closed subgroup of S∞ that contain α.
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Via Borel transformations, oligomorphic groups

can be seen as countable structures

Easy fact: the oligomorphic groups form a Borel set in the space of

closed subgroups of S∞.

Theorem (N., Schlicht, Tent)

Isomorphism of oligomorphic groups is Borel bi-reducible with the

isomorphism relation ∼=B on an invariant Borel set B of structures

with domain N for the language with one ternary relation symbol.
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Some basics towards proving the theorem

• Recall that S∞ is a topological group: the subgroups

Un = {g ∈ S∞ : ∀i ≤ n g(i) = i}

form a basis of neighbourhoods of 1.

(S∞ is totally disconnected.)

• For each closed subgroup G of S∞ the open subgroups (of the

form G ∩ Un if you like) form a nbhd basis of 1.

• So the open cosets form a basis of the topology.

• Note that each open left coset is also an open right coset,

because aU = (aUa−1)a.

• in S∞ an open left coset is essentially the same as a nbhd

Nσ = {α ∈ S∞ : ∀i < n [σ(i) = α(i)]}.
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A closed subgroup G of S∞ is called Roelcke precompact (R.p.) if

(∗) for each open subgroup U of G

there is a finite set F ⊆ G such that UFU = G.

Fact

(1) The class of R.p. closed subgroups of S∞ is Borel.

(2) From such a group G we can in a Borel way determine a listing

A0, A1, . . . without repetition of all the open cosets.

Proof of (1). It suffices to check the condition (∗) for the basic open

subgroups Gn = G ∩ Un, where Un the group of permutations of N
fixing 0, . . . , n− 1. If F exists for U , we can pick it from a countable

dense set predetermined from G in a Borel way.

Proof of (2). Each open subgroup is a union of finitely many double

cosets UnaUn, for some n depending on U only.

10 / 27



oligomorphic ⇒ Roelcke precompact

Recall: A closed subgroup G of S∞ is called Roelcke precompact if

for each open subgroup U there is finite F ⊆ G such that UFU = G.

Fact (Rosendal, Tsankov)

Each oligomorphic group G is Roelcke precompact, and hence has

only countably many open subgroups.

Proof: It suffices to show the condition for subgroups U = G∩Un.

• Write a = (0, . . . , n− 1), so U is the stabilizer of a.

• Let g1, . . . , gk ∈ G be such that each orbit of G on

Ga×Ga ⊆ N2n contains an element of the form (a, gia).

• Then G = UFU where F = {g1, . . . , gk}.
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Theorem (Kechris, N, Tent, JSL, 2018)

Topological isomorphism of Roelcke precompact groups is Borel

reducible to the isomorphism relation on the class of countable

models with one ternary predicate.

Proof idea.

• For Roelcke precompact G, let M(G) be the structure with

domain the open cosets. Via the listing A0, A1, . . . above, we

can identify the domain of M(G) with ω.

• The ternary predicate R(A,B,C) holds in M(G) if AB ⊆ C.

The map G→M(G) is Borel. The main work is to show that for

Roelcke precompact G,H,

G ∼= H ⇐⇒M(G) ∼=M(H).

A similar argument works for the locally compact groups.

(Note that RP ∩ locally compact = compact.)
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Theorem (to prove)

Isomorphism of oligomorphic groups is Borel bi-reducible with the

isomorphism relation of on an isomorphism invariant Borel set B of

structures with domain N.

For Roelcke precompact G, we defined a structure M(G) with domain

consisting of the cosets of open subgroups. We can in a Borel way find a

bijection of these cosets with N. Showed G ∼= H ⇐⇒M(G) ∼=M(H).

We will define an “inverse” operation G of the operation M on a

Borel set B of models. For oligomorphic G and M ∈ B we will have

G(M(G)) ∼= G and M(G(M)) ∼= M

This suffices because it implies the converse reduction: for M,N ∈ B,

G(M) ∼= G(N)⇐⇒M ∼= N .
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Axiomatizing the range of the mapM
• We first define the map G on an isomorphism invariant

co-analytic set B of L-structures that contains range(M).

• Since M(G(M)) ∼= M for each M ∈ B, actually B equals the

closure of range(M) under isomorphism, so B is also analytic,

and hence Borel.

• We will observe a number of properties, called axioms, of all

the structures of the form M(G). They can be expressed

either in Π1
1 form or in Lω1,ω form.

The set B of countable structures encoding all the oligomorphic

groups will be the set of structures satisfying all the axioms.

Don’t confuse the structure M(G) with the structure AG that has G as

automorphism group. These are totally different. Isomorphism of

groups means bi-interpretability of those structures, not isomorphism.
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Definable relations inM(G)

Recall that our language L only has one ternary relation
R(A,B,C) (which is interpreted by AB ⊆ C for cosets A,B,C).

• The property of A to be a subgroup is definable in M(G) by the

formula AA ⊆ A. That a subgroup A is contained in a subgroup B

is definable by the formula AB ⊆ B.

• A is a left coset of a subgroup U if and only if U is the maximum

subgroup with AU ⊆ A; similarly for A being a right coset of U .

• A ⊆ B ⇐⇒ AU ⊆ B in case A is a left coset of U .

The first few axioms posit for a general L-structure M that the

formulas behave reasonably. E.g., ⊆ is transitive. We use terms

like “subgroup”, “left coset of” to refer to elements satisfying them.
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The filter group F(M): domain and operations

Given a structure M , denote by F(M) the set of filters (for ⊆)

that contain both a left and a right coset for each subgroup.

These cosets are unique because axioms require that distinct left cosets

are disjoint etc. We use letters x, y, z for such filters.

Definition (Operations on F(M))

x · y = {C ∈M | ∃A ∈ x∃B ∈ y AB ⊆ C}.

For A a right coset of V and B a left coset of V , let A∗ = B if

AB ⊆ V . Let x−1 = {A∗ : A ∈ x}.

The filter of subgroups is in F(M). We view this as the identity 1.
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The filter group F(M): topology, actions

We can express by Π1
1 axioms that these operations behave as a

group: the operation · is associative, and ∀x [x · x−1 = 1].

The sets {x : U ∈ x}, where U ∈M is a subgroup, are declared to

be a basis of neighbourhoods for the identity. Positing the right

axioms, we ensure that F(M) is a Polish group.

For a subgroup V ∈M , LC(V ) denotes the set of left cosets of V .

There is an action F(M) y LC(V ) given by

x · A = B iff ∃S ∈ x [SA ⊆ B].
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Faithful subgroups

• Let G be a closed subgroup of S∞, and let V ≤ G. The

translation action Gy LC(V ) is given by g · (aV ) = (ga)V

• Each oligomorphic G has an open subgroup V such that the

action Gy LC(V ) is faithful and oligomorphic.

• To show this, let V be the pointwise stabiliser of {n1, . . . , nk},
where the ni represent the k many 1-orbits.

• Call such a V a faithful subgroup.

• By a further axiom for an abstract L-structure M , we require

the existence of such V , and that the embedding of F(M) into

S∞ given by the action Gy LC(V ) is topological

(these axioms are in Lω1,ω but not first-order).

• Then F(M) is oligomorphic and hence Roelcke precompact.
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Showing that the coset structure of F(M) is

isomorphic to M

Mainly, we have to show that each open subgroup U of F(M) has

the form U = {x : U ∈ x} for some subgroup U in M .

• By definition of the topology, U contains a basic open

subgroup Ŵ = {x : W ∈ x}, for some subgroup W ∈M .

• Since F(M) is Roelcke precompact, U is a finite union of

double cosets of Ŵ .

• We require as an axiom for M that each such finite union that

is closed under the group operations corresponds to an actual

subgroup in M .
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Turning F(M) into closed subgroup G(M) of S∞
• By Π1

1 uniformization (Addison/Kondo), from M ∈ B we can

in a Borel way determine a faithful subgroup V .

• Let A0, A1, . . . list LC(V ) in the natural order.

• Then the action F(M) y LC(V ) yields a topological

embedding of F(M) into S∞.

• Its range is the desired closed subgroup G(M).

By the arguments above we have G(M(G)) ∼= G for each

oligomorphic G, and M(G(M)) ∼= M for each M ∈ B.

Theorem (Finished)

Isomorphism of oligomorphic groups is Borel bi-reducible with the

isomorphism relation on an invariant Borel set B of structures with

domain N.
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Complexity of isomorphism

of oligomorphic subgroups of S∞
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Conjugacy of oligomorphic groups

Fact. For oligomorphic groups, being conjugate is Borel reducible

to idR. (This fails for other classes, e.g. for profinite by KNS ’18.)

Proof.

• Given a closed subgroup G of S∞, let VG be the corresponding

orbit equivalence structure: for each k > 0 introduce a 2k-ary

relation that holds for two k-tuples if they are in the same

orbit of Nk.

• G is oligomorphic ⇒ VG is ω-categorical.

• One checks that for oligomorphic groups G,H

G and H are conjugate in S∞ ⇐⇒ VG ∼= VH .

• Isomorphism of ω-categorical structures M , N for the same

language is smooth, because M ∼= N ⇐⇒ Th(M) = Th(N).
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Upper bound on complexity of isomorphism

An equivalence relation is essentially countable if it is Borel

reducible to a Borel equivalence relation with all classes countable.

(Things like E0, or ≡T .) These are way below graph isomorphism.

Theorem (N., Tent, Schlicht ’18)

Isomorphism of oligomorphic groups is essentially countable.

• We use a result by Hjorth/Kechris 1995 that characterizes

essential countability of the isomorphism relation on a Borel

class of structures by model theory in Lω1,ω.

• We have to adapt some of our axioms so that they can be

expressed in Lω1,ω.
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Hjorth-Kechris result in infinitary model theory
R is a ternary relation. One says that F ⊆ Lω1,ω(R) is a fragment

if F is closed under subformulas, substitution, and first order

operations such as finite Boolean combinations and quantification.

• Given: a Borel, isomorphism invariant class such as B.

• By the Lopez Escobar theorem, B can be axiomatised by a

sentence σ in Lω1,ω(R).

• Let F be a countable fragment containing σ.

Theorem (Hjorth and Kechris. 1995)

The following are equivalent. (We will only use (i)→(ii). )

(i) for each M ∈ B there is a tuple a in M such that ThF (M,a) is

ℵ0-categorical.

(ii) The isomorphism relation on B is essentially countable
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Upper bound on complexity of isomorphism:

finish

B is Borel invariant class. Sentence σ ∈ Lω1,ω describes it.

Recall Hjorth/Kechris (i)→(ii): Suppose that for each M ∈ B there

is a tuple a in M such that ThF (M,a) is ℵ0-categorical.

Then the isomorphism relation on B is essentially countable.

• I our case let F be a countable fragment containing σ and the

formula δ(W ) describing a faithful subgroup W .

• Check that ThF (M,W ) is ℵ0-categorical.

This shows that ∼=B is essentially countable.
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Extension to quasi-oligomorphic groups

A closed subgroup G of S∞ is called quasi-oligomorphic if it is

isomorphic to an oligomorphic group.

Corollary

This class is Borel.

Its isomorphism relation is also essentially countable.

Idea:

• M(G) is defined for any Roelcke precompact group.

• G(M(G)) is oligomorphic via its natural embeddeding

into S∞.
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Some open problems

• How complex is isomorphism of arbitrary closed subgroups of S∞?

Is it ≤B-complete for analytic equivalence relations?

• What is a lower bound for the complexity of isomorphism for

oligomorphic groups? Is E0 Borel reducible to it?

• Find a good upper bound for the Scott rank of the structures

M(G). (Their rank is bounded by a countable ordinal because the

isom. relation is Borel.)
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