The complexity of the isomorphism relation between oligomorphic groups

André Nies joint work with Philipp Schlicht and Katrin Tent

Set theory of the Reals, Casa Matemática Oaxaca, 2019

Oligomorphic groups

- S_{∞} denotes the group of permutations of \mathbb{N} .
- S_{∞} is a topological group: the subgroups U_n of permutations fixing $0, \ldots, n-1$ form a basis of neighbourhoods of 1.
- For any model M with domain \mathbb{N} , the group $\operatorname{Aut}(M)$ is a closed subgroup of S_{∞} .
- A closed subgroup G of S_∞ is called oligomorphic (Cameron, 1980s) if for each k, the action of G on N^k has only finitely many orbits.
- whether G is oligomorphic depends on the way G is embedded into S_{∞} .
- An oligomorphic group cannot be locally compact, let alone countable.

Oligomorphic groups as automorphism groups

Fact

A closed subgroup G of S_{∞} is oligomorphic \iff

G is the automorphism group of an ω -categorical structure A (with domain \mathbb{N}).

Proof.

 $\Leftarrow: \text{ this follows from the Ryll-Nardzewski Theorem that for each } k, \\ \text{the structure } A \text{ has only finitely many } k-\text{types.} \\ \Rightarrow:$

- Given a subgroup $U \leq S_{\infty}$ let A_U be the structure with a k-ary relation symbol for each orbit of U on \mathbb{N}^k .
- Then $\overline{U} = \operatorname{Aut}(A_U)$. So for closed G we have $G = \operatorname{Aut}(A_G)$.
- If G is oligomorphic then A_G is ω -categorical.

Oligomorphic groups as automorphism groups

Fact (Recall)

A closed subgroup G of S_{∞} is oligomorphic \iff G is the automorphism group of an ω -categorical structure A.

For instance, the following automorphism groups are oligomorphic:

- *S*_∞
- Aut(random graph)
- $\operatorname{Aut}(\mathbb{F}_p^{(\omega)})$ where $\mathbb{F}_p^{(\omega)}$ is vector space of dimension ω over the field with p elements
- Aut(\mathbb{Q} , <), the group of order-preserving permutations of the rationals.

Properties of the oligomorphic group $\operatorname{Aut}(\mathbb{Q}, <)$

Let $G = \operatorname{Aut}(\mathbb{Q}, <)$.

- G is highly homogeneous: for each k, its action on $\mathbb{N}^{[k]}$ is transitive
- G has three nontrivial normal subgroups
- G has the small index property: any subgroup of G of index
 2^{ℵ₀} is open
- G has a dense subgroup isomorphic to the free group F_2 (Glass and McCleary 1990). In particular, G is topologically finitely generated
- G is extremely amenable: each continuous action on a compact space has a fixed point (Pestov).

Borel reducibility \leq_B

A standard Borel space is a space of the form (Z, \mathcal{B}) , where \mathcal{B} is the σ -algebra generated by the open sets of a Polish topology on Z. Sets in \mathcal{B} are called Borel sets of Z.

- Let X, Y be standard Borel spaces. A function $g: X \to Y$ is Borel if the preimage of each Borel set in Y is Borel in X.
- Let E, F be equivalence relations on X, Y respectively. We write $E \leq_B F$, and say that E is Borel below F, if there is a Borel function $g: X \to Y$ such that

 $uEv \leftrightarrow g(u)Fg(v)$

for each $u, v \in X$.

An equivalence relation is called smooth if it is Borel-below id_Y , the identity relation on some uncountable Polish space Y (say, \mathbb{R}). The Borel space of closed subgroups of S_{∞} For a 1-1 map $\sigma: \{0, \ldots, n-1\} \to \mathbb{N}$ let

$$N_{\sigma} = \{ \alpha \in S_{\infty} \colon \forall i < n \left[\sigma(i) = \alpha(i) \right] \}$$

The closed subgroups of S_{∞} can be seen as points in a standard Borel space. To define the Borel sets, we start with sets of the form

 $\{G \leq_c S_{\infty} \colon G \cap N_{\sigma} \neq \emptyset\},\$

where $G \leq_c S_{\infty}$ means that G is a closed subgroup of S_{∞} .

The Borel sets are generated from these basic sets by complementation and countable union.

Example: for every $\alpha \in S_{\infty}$, the set $\bigcap_k \{H \colon H \cap N_{\alpha \mid k} \neq \emptyset\}$ is Borel. Its elements are the closed subgroup of S_{∞} that contain α .

Via Borel transformations, oligomorphic groups can be seen as countable structures

Easy fact: the oligomorphic groups form a Borel set in the space of closed subgroups of S_{∞} .

Theorem (N., Schlicht, Tent)

Isomorphism of oligomorphic groups is Borel bi-reducible with the isomorphism relation $\cong_{\mathcal{B}}$ on an invariant Borel set \mathcal{B} of structures with domain \mathbb{N} for the language with one ternary relation symbol.

Some basics towards proving the theorem

• Recall that S_{∞} is a topological group: the subgroups

 $U_n = \{g \in S_\infty \colon \forall i \le n \ g(i) = i\}$

form a basis of neighbourhoods of 1. $(S_{\infty} \text{ is totally disconnected.})$

- For each closed subgroup G of S_{∞} the open subgroups (of the form $G \cap U_n$ if you like) form a nbhd basis of 1.
- So the open cosets form a basis of the topology.
- Note that each open left coset is also an open right coset, because $aU = (aUa^{-1})a$.
- in S_{∞} an open left coset is essentially the same as a nbhd $N_{\sigma} = \{ \alpha \in S_{\infty} : \forall i < n \ [\sigma(i) = \alpha(i)] \}.$

A closed subgroup G of S_{∞} is called Roelcke precompact (R.p.) if (*) for each open subgroup U of Gthere is a finite set $F \subseteq G$ such that UFU = G.

Fact

(1) The class of R.p. closed subgroups of S_{∞} is Borel.

(2) From such a group G we can in a Borel way determine a listing A_0, A_1, \ldots without repetition of all the open cosets.

Proof of (1). It suffices to check the condition (*) for the basic open subgroups $G_n = G \cap U_n$, where U_n the group of permutations of \mathbb{N} fixing $0, \ldots, n-1$. If F exists for U, we can pick it from a countable dense set predetermined from G in a Borel way.

Proof of (2). Each open subgroup is a union of finitely many double cosets $U_n a U_n$, for some *n* depending on *U* only.

oligomorphic \Rightarrow Roelcke precompact

Recall: A closed subgroup G of S_{∞} is called Roelcke precompact if for each open subgroup U there is finite $F \subseteq G$ such that UFU = G.

Fact (Rosendal, Tsankov)

Each oligomorphic group G is Roelcke precompact, and hence has only countably many open subgroups.

Proof: It suffices to show the condition for subgroups $U = G \cap U_n$.

- Write $\overline{a} = (0, \dots, n-1)$, so U is the stabilizer of \overline{a} .
- Let $g_1, \ldots, g_k \in G$ be such that each orbit of G on $G\overline{a} \times G\overline{a} \subseteq \mathbb{N}^{2n}$ contains an element of the form $(\overline{a}, g_i\overline{a})$.
- Then G = UFU where $F = \{g_1, \ldots, g_k\}$.

Theorem (Kechris, N, Tent, JSL, 2018)

Topological isomorphism of Roelcke precompact groups is Borel reducible to the isomorphism relation on the class of countable models with one ternary predicate.

Proof idea.

- For Roelcke precompact G, let $\mathcal{M}(G)$ be the structure with domain the open cosets. Via the listing A_0, A_1, \ldots above, we can identify the domain of $\mathcal{M}(G)$ with ω .
- The ternary predicate R(A, B, C) holds in $\mathcal{M}(G)$ if $AB \subseteq C$. The map $G \to \mathcal{M}(G)$ is Borel. The main work is to show that for Roelcke precompact G, H,

 $G \cong H \iff \mathcal{M}(G) \cong \mathcal{M}(H).$

A similar argument works for the locally compact groups. (Note that $RP \cap locally compact = compact.)$

Theorem (to prove)

Isomorphism of oligomorphic groups is Borel bi-reducible with the isomorphism relation of on an isomorphism invariant Borel set \mathcal{B} of structures with domain \mathbb{N} .

For Roelcke precompact G, we defined a structure $\mathcal{M}(G)$ with domain consisting of the cosets of open subgroups. We can in a Borel way find a bijection of these cosets with \mathbb{N} . Showed $G \cong H \iff \mathcal{M}(G) \cong \mathcal{M}(H)$.

We will define an "inverse" operation \mathcal{G} of the operation \mathcal{M} on a Borel set \mathcal{B} of models. For oligomorphic G and $M \in \mathcal{B}$ we will have

 $\mathcal{G}(\mathcal{M}(G)) \cong G$ and $\mathcal{M}(\mathcal{G}(M)) \cong M$

This suffices because it implies the converse reduction: for $M, N \in \mathcal{B}$,

 $\mathcal{G}(M) \cong \mathcal{G}(N) \Longleftrightarrow M \cong N.$

Axiomatizing the range of the map \mathcal{M}

- We first define the map \mathcal{G} on an isomorphism invariant co-analytic set \mathcal{B} of *L*-structures that contains range(\mathcal{M}).
- Since $\mathcal{M}(\mathcal{G}(M)) \cong M$ for each $M \in \mathcal{B}$, actually \mathcal{B} equals the closure of range (\mathcal{M}) under isomorphism, so \mathcal{B} is also analytic, and hence Borel.
- We will observe a number of properties, called axioms, of all the structures of the form $\mathcal{M}(G)$. They can be expressed either in Π_1^1 form or in $L_{\omega_1,\omega}$ form.

The set \mathcal{B} of countable structures encoding all the oligomorphic groups will be the set of structures satisfying all the axioms. Don't confuse the structure $\mathcal{M}(G)$ with the structure A_G that has G as automorphism group. These are totally different. Isomorphism of groups means bi-interpretability of those structures, not isomorphism.

Definable relations in $\mathcal{M}(G)$

Recall that our language L only has one ternary relation R(A, B, C) (which is interpreted by $AB \subseteq C$ for cosets A, B, C).

- The property of A to be a *subgroup* is definable in $\mathcal{M}(G)$ by the formula $AA \subseteq A$. That a subgroup A is contained in a subgroup B is definable by the formula $AB \subseteq B$.
- A is a *left coset* of a subgroup U if and only if U is the maximum subgroup with $AU \subseteq A$; similarly for A being a *right coset* of U.
- $A \subseteq B \iff AU \subseteq B$ in case A is a left coset of U.

The first few axioms posit for a general *L*-structure *M* that the formulas behave reasonably. E.g., \subseteq is transitive. We use terms like "subgroup", "left coset of" to refer to elements satisfying them.

The filter group $\mathcal{F}(M)$: domain and operations

Given a structure M, denote by $\mathcal{F}(M)$ the set of filters (for \subseteq) that contain both a left and a right coset for each subgroup.

These cosets are unique because axioms require that distinct left cosets are disjoint etc. We use letters x, y, z for such filters.

Definition (Operations on $\mathcal{F}(M)$)

 $x \cdot y = \{ C \in M \mid \exists A \in x \exists B \in y \ AB \subseteq C \}.$

For A a right coset of V and B a left coset of V, let $A^* = B$ if $AB \subseteq V$. Let $x^{-1} = \{A^* \colon A \in x\}.$

The filter of subgroups is in $\mathcal{F}(M)$. We view this as the identity 1.

The filter group $\mathcal{F}(M)$: topology, actions

We can express by Π_1^1 axioms that these operations behave as a group: the operation \cdot is associative, and $\forall x [x \cdot x^{-1} = 1]$.

The sets $\{x \colon U \in x\}$, where $U \in M$ is a *subgroup*, are declared to be a basis of neighbourhoods for the identity. Positing the right axioms, we ensure that $\mathcal{F}(M)$ is a Polish group.

For a subgroup $V \in M$, LC(V) denotes the set of left cosets of V.

There is an action $\mathcal{F}(M) \curvearrowright LC(V)$ given by

 $x \cdot A = B$ iff $\exists S \in x [SA \subseteq B].$

Faithful subgroups

- Let G be a closed subgroup of S_{∞} , and let $V \leq G$. The translation action $G \curvearrowright LC(V)$ is given by $g \cdot (aV) = (ga)V$
- Each oligomorphic G has an open subgroup V such that the action $G \curvearrowright LC(V)$ is faithful and oligomorphic.
- To show this, let V be the pointwise stabiliser of $\{n_1, \ldots, n_k\}$, where the n_i represent the k many 1-orbits.
- Call such a V a faithful subgroup.
- By a further axiom for an abstract *L*-structure *M*, we require the existence of such *V*, and that the embedding of $\mathcal{F}(M)$ into S_{∞} given by the action $G \curvearrowright LC(V)$ is topological (these axioms are in $L_{\omega_{1},\omega}$ but not first-order).
- Then $\mathcal{F}(M)$ is oligomorphic and hence Roelcke precompact.

Showing that the coset structure of $\mathcal{F}(M)$ is isomorphic to M

Mainly, we have to show that each open subgroup \mathcal{U} of $\mathcal{F}(M)$ has the form $\mathcal{U} = \{x : U \in x\}$ for some subgroup U in M.

- By definition of the topology, \mathcal{U} contains a basic open subgroup $\widehat{W} = \{x \colon W \in x\}$, for some subgroup $W \in M$.
- Since $\mathcal{F}(M)$ is Roelcke precompact, \mathcal{U} is a finite union of double cosets of \widehat{W} .
- We require as an axiom for M that each such finite union that is closed under the group operations corresponds to an actual *subgroup* in M.

Turning $\mathcal{F}(M)$ into closed subgroup $\mathcal{G}(M)$ of S_{∞}

- By Π_1^1 uniformization (Addison/Kondo), from $M \in \mathcal{B}$ we can in a Borel way determine a faithful *subgroup* V.
- Let A_0, A_1, \ldots list LC(V) in the natural order.
- Then the action $\mathcal{F}(M) \curvearrowright LC(V)$ yields a topological embedding of $\mathcal{F}(M)$ into S_{∞} .
- Its range is the desired closed subgroup $\mathcal{G}(M)$.

By the arguments above we have $\mathcal{G}(\mathcal{M}(G)) \cong G$ for each oligomorphic G, and $\mathcal{M}(\mathcal{G}(M)) \cong M$ for each $M \in \mathcal{B}$.

Theorem (Finished)

Isomorphism of oligomorphic groups is Borel bi-reducible with the isomorphism relation on an invariant Borel set \mathcal{B} of structures with domain \mathbb{N} .

Complexity of isomorphism of oligomorphic subgroups of S_{∞}

Conjugacy of oligomorphic groups

Fact. For oligomorphic groups, being conjugate is Borel reducible to $id_{\mathbb{R}}$. (This fails for other classes, e.g. for profinite by KNS '18.)

Proof.

- Given a closed subgroup G of S_{∞} , let V_G be the corresponding orbit equivalence structure: for each k > 0 introduce a 2k-ary relation that holds for two k-tuples if they are in the same orbit of \mathbb{N}^k .
- G is oligomorphic $\Rightarrow V_G$ is ω -categorical.
- One checks that for oligomorphic groups G, H

G and H are conjugate in $S_{\infty} \iff V_G \cong V_H$.

• Isomorphism of ω -categorical structures M, N for the same language is smooth, because $M \cong N \iff \operatorname{Th}(M) = \operatorname{Th}(N)$.

Upper bound on complexity of isomorphism

An equivalence relation is essentially countable if it is Borel reducible to a Borel equivalence relation with all classes countable. (Things like E_0 , or \equiv_T .) These are way below graph isomorphism.

Theorem (N., Tent, Schlicht '18)

Isomorphism of oligomorphic groups is essentially countable.

- We use a result by Hjorth/Kechris 1995 that characterizes essential countability of the isomorphism relation on a Borel class of structures by model theory in $L_{\omega_1,\omega}$.
- We have to adapt some of our axioms so that they can be expressed in $L_{\omega_1,\omega}$.

Hjorth-Kechris result in infinitary model theory R is a ternary relation. One says that $F \subseteq L_{\omega_1,\omega}(R)$ is a fragment if F is closed under subformulas, substitution, and first order operations such as finite Boolean combinations and quantification.

- Given: a Borel, isomorphism invariant class such as \mathcal{B} .
- By the Lopez Escobar theorem, \mathcal{B} can be axiomatised by a sentence σ in $L_{\omega_1,\omega}(R)$.
- Let F be a countable fragment containing σ .

Theorem (Hjorth and Kechris. 1995)

The following are equivalent. (We will only use (i) ${\rightarrow}(ii).$)

(i) for each $M \in \mathcal{B}$ there is a tuple \overline{a} in M such that $\operatorname{Th}_F(M, \overline{a})$ is \aleph_0 -categorical.

(ii) The isomorphism relation on \mathcal{B} is essentially countable

Upper bound on complexity of isomorphism: finish

 \mathcal{B} is Borel invariant class. Sentence $\sigma \in L_{\omega_1,\omega}$ describes it.

Recall Hjorth/Kechris (i) \rightarrow (ii): Suppose that for each $M \in \mathcal{B}$ there is a tuple \overline{a} in M such that $\operatorname{Th}_F(M, \overline{a})$ is \aleph_0 -categorical. Then the isomorphism relation on \mathcal{B} is essentially countable.

- I our case let F be a countable fragment containing σ and the formula $\delta(W)$ describing a faithful subgroup W.
- Check that $\operatorname{Th}_F(M, W)$ is \aleph_0 -categorical.

This shows that $\cong_{\mathcal{B}}$ is essentially countable.

Extension to quasi-oligomorphic groups

A closed subgroup G of S_{∞} is called quasi-oligomorphic if it is isomorphic to an oligomorphic group.

Corollary

This class is Borel.

Its isomorphism relation is also essentially countable.

Idea:

- $\mathcal{M}(G)$ is defined for any Roelcke precompact group.
- G(M(G)) is oligomorphic via its natural embeddeding into S_∞.

Some open problems

- How complex is isomorphism of arbitrary closed subgroups of S_{∞} ? Is it \leq_B -complete for analytic equivalence relations?
- What is a lower bound for the complexity of isomorphism for oligomorphic groups? Is E_0 Borel reducible to it?
- Find a good upper bound for the Scott rank of the structures $\mathcal{M}(G)$. (Their rank is bounded by a countable ordinal because the isom. relation is Borel.)

References Kechris, N. and Tent, The complexity of topological group isomorphism, The Journal of Symbolic Logic, 83(3), 1190-1203. arXiv: 1705.08081

N., Schlicht and Tent, Oligomorphic groups are essentially countable, submitted, on arXiv. Also Logic Blog 2018 (bi-interpretability).